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Particle number fluctuations in a membrane channel
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Channel-facilitated transport of metabolites across biological membranes results in excess noise in
the current carried by small ions. This noise originates from fluctuations of the number of metabolite
molecules in the channel due to their diffusion. We have carried out a theoretical study of particle
number fluctuations in a cylindrical pore. First, we obtain the power spectral density of these
fluctuations as a function of pore length and radius, as well as the diffusion constants of the particle
in the pore and in the bulk, in the absence of particle–pore interactions. We then perform
three-dimensional Brownian dynamics simulations that show excellent agreement with the
analytical result. Finally, we demonstrate that explicit expressions for the low-frequency limit of the
spectral density can be found even when the particle interacts with the pore. ©2000 American
Institute of Physics.@S0021-9606~00!70842-7#
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I. INTRODUCTION

In this paper we analyze fluctuations of the number
diffusing particles in a cylindrical channel connecting tw
reservoirs shown in Fig. 1. This problem arises in connec
with the measurements of the diffusion constants of meta
lites inside membrane channels. It is now firmly establish
that transport of metabolites and, more generally, hi
molecular-weight solutes occurs through large channel
the cell membranes.1 Examples of such channels includ
bacterial porins, mitochondrial channels, gap junctions,
nuclear pore complex, and protein-conducting channels
the endoplasmic reticulum. A recent study2 even suggests
that particles as large as phage f1~about 7 nm in diameter!
can exit host cells with the help of a phage-encoded cha
protein.

The membrane transport properties for solutes other t
monoatomic ions are usually determined from macrosco
fluxes of the molecules in question through multichannel
jects such as cells, cell organelles, or liposomes. The ma
scopic flux measurements involve radioactive, fluorescen
colorimetric probes,3 electron-opaque tracers,4 liposome
swelling,5 or solute-specific reactions, such as the luciferi
luciferase system for adenosine triphosphate detection.6

Alternatively, the transport properties can be determin
by measuring how the addition of metabolite influences
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electrolyte ion current through the membrane channel. T
current decreases when a neutral metabolite molecule e
the channel. The average decrease of the current is pro
tional to the average number of molecules inside the chan
when this number is small. From solute-induced current fl
tuations measured with the time resolution of a typic
single-channel experiment~usually in the range of tens o
hundreds of micro-seconds!, it is possible to deduce diffu-
sion constant corresponding to the much faster transi
~e.g., in the nanosecond range!.7

One can characterize solute-induced fluctuations in
ion current i in terms of the experimentally accessib
parameter—the power spectral density,Si( f ). In situations
where the average number of metabolite molecules in
channel,̂ N&, is small enough to neglect interactions betwe
molecules,Si( f ) is proportional to the normalized powe
spectral density of molecule number fluctuations,S( f ),

Si~ f !5^N&~Dg!2V2S~ f !, ~1!

whereDg is the reduction in channel conductance upon
tering of one metabolite molecule,V is the applied voltage.7

The spectral density can be expressed in terms of the
malized correlation function of the number of metabolites
the channel,C(t) ~e.g., see Ref. 8!

S~ f !54E
0

`

C~ t !cos~2p f t !dt. ~2!
6 © 2000 American Institute of Physics
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This expression shows that the spectral density is the Fou
transform of the number correlation function. The correlat
function is identical to the probability of finding a particle
the channel given that initially the particle was uniform
distributed in the channel~that is, the survival probability of
the particle!.

Conductance noise arising from the stochastic natur
matter ~or heat! exchange between the sample and
‘‘bath’’ has been repeatedly addressed for at least ha
century.9 In some cases, for example, for the uniform thre
dimensional diffusion of particles in and out of a spheric
volume,10 exact expressions for the power spectral density
the particle number fluctuations have been obtained. H
ever, for a cylindrical channel connecting two reservoirs t
is not the case. To estimate the low-frequency compon
and frequency width of the particle number fluctuations
side the channel, different groups use different express
relating these quantities to the channel length,L, and diffu-
sion constant inside the channel,D. For example, the fre-
quency width has been estimated asD/pL2 ~Ref. 11!, D/L2

~Ref. 12!, or 6D/pL2 ~this estimate follows from the char
acteristic diffusion relaxation time,L2/12D, given by Feher
and Weissman13 and by Berg,14 if one assumes a simpl
Lorentzian shape for the noise spectrum!. Though all these
expressions indeed retain theD/L2 ratio, they give different
numerical factors for the cut-off frequency and, therefore,
the low-frequency spectral density. Moreover, all these
pressions, being independent of the channel radius,a, in fact,
are obtained for a long and narrow channel for whichL/a
@1 and, therefore, one can neglect the particle return p
ability.

In this paper we obtain the Fourier transform of the nu
ber correlation function by reducing the three-dimensio
problem to the effective one-dimensional problem for t
particle diffusing in the channel. We obtain an analytic
expression for the spectral density as a function of frequen
which depends on the length and radius of the channe
well as the diffusion constants of the particle in the chan
and in the bulk. The analytical result is in excellent agre
ment with the spectral density found by Brownian dynam
simulations. Finally, we show how one can analytically o
tain the low-frequency limit of the spectral density for th
case of arbitrary potentialU(x) along the channel as well a
arbitrary dependence of the diffusion coefficient on particl
position inside the channel.

FIG. 1. A cylindrical channel of lengthL and radiusa in equilibrium with
two reservoirs. Due to diffusion, Brownian particles exchange between
channel and the bulk. Arrows illustrate random displacement of parti
during time incrementDt. The instantaneous particle number in the chan
fluctuates~see Fig. 3!, giving rise to channel conductance fluctuations.
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It is worth mentioning that often there is a highly sp
cific binding site for the metabolite inside the channel po
One of the well known examples is sugar interaction with
maltoporin channel.15,16 If the mean lifetime of the metabo
lite on the site is comparable or larger thanL2/D, the noise
spectral density can be dramatically different from the o
discussed here and will be considered in a forthcoming p
lication.

II. STATEMENT OF THE PROBLEM

Consider two compartments connected by a cylindri
channel of radiusa and lengthL ~Fig. 1! containing nonin-
teracting particles that diffuse independently. The diffusi
constants in the channel and in the bulk will be denoted bD
and Db , respectively. We will find the normalized correla
tion function of the number of particles in the channel
calculating the time-dependent probability of finding a p
ticle in the channel given that initially the particle was un
formly distributed along the channel.

It is natural to approximate the motion in the channel
one-dimensional. The probability densityp(x,t)5p inside
the channel satisfies the equation

]p

]t
5D

]2p

]x2 , 0,x,L, ~3!

and the initial conditionp(x,0)51/L. This equation must be
supplemented by boundary conditions atx50,L, which will
be discussed below. The correlation function of interes
the survival probability and is given by

C~ t !5E
0

L

p~x,t !dx. ~4!

We will solve Eq. ~3! by the Laplace transform method
Given the Laplace transform of the survival probability

Ĉ~s!5E
0

`

e2stC~ t !dt, ~5!

one can find the spectral density by the relation

S~ f !54 Re$Ĉ~s5 i2p f !%. ~6!

Thus, the calculation ofS( f ) reduces to finding the Laplac
transform of the survival probability.

III. ANALYTIC EXPRESSION FOR THE SPECTRAL
DENSITY

The formalism of this section is based on boundary c
ditions that are obtained using intuitive arguments. In
next section, using a more rigorous approach, we will sh
that the analytic expression for the spectral density obtai
below is valid except at very high frequencies (f a2/D@1).

A particle reaching the channel end may escape to in
ity or may return back into the channel. To describe this
use radiation boundary conditions of the form

D
]p~x,t !

]x U
x50

5kp~0,t !; D
]p~x,t !

]x U
x5L

52kp~L,t !,

~7!

e
s
l
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wherek is a rate constant characterizing the ‘‘efficiency
escape’’ at the endpoints.

To find k we consider a particle in a system of tw
compartments connected by a channel~Fig. 1! at equilib-
rium. It is equally probable to find the particle at any po
and, therefore, the equilibrium density is a constant,peq

51/V, whereV is the total volume of the system. The effe
tive one-dimensional density inside the channel is also c
stant and given byp12d eq5pa2/V. We determinek from
the condition that fluxes entering and leaving the channel
equal to each other. The flux escaping the channel int
compartment isj out5kpa2/V. This flux is compensated b
the entering flux, j in54Dba/V, where the rate constan
4Dba, describes the steady-state trapping of particles by
absorbing disk of radiusa located on a reflecting wall.17

Since j in5 j out, we obtain

k5
4Db

pa
. ~8!

This rate constant depends on the bulk diffusion const
When Db→` or a→0, k→` which means that the end
points become perfectly absorbing.

To find the survival probability one has to solve the d
fusion equation@Eq. ~3!# with the boundary conditions in Eq
~7! and the initial conditionp(x,0)51/L. Laplace transform-
ing Eq. ~3! we have
s
e
n
th
t

n-

re
a

n

t.

sp̂2
1

L
5D

]2p̂

]x2 . ~9!

The solution of this equation satisfying the initial and boun
ary conditions is

p̂~x,s!

5
1

LsF 12

k coshSA s

D
S x2

L

2
D D

k coshSA s

D

L

2
D 1AsD sinhSA s

D

L

2
D G .

~10!

Integrating this with respect tox over the interval (0,L), we
find the Laplace transform of the survival probability

Ĉ~s!5
1

s
2

1

sFs
L

2k
1A s

D

L

2
cothSA s

D

L

2
D G . ~11!

Using Eq.~6! we find
S~ f !5
1

p f a

2b~sinh2 a1sin2 a!1sinh~2a!2sin~2a!

2~sinh2 a1cos2 a!1b~sinh~2a!2sin~2a!!1b2~sinh2 a1sin2 a!
, ~12!
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where

a5Ap f

D

L

2
; b5

4D

Lk
a5

paD

LDb
a5Ap3

4

a2D

Db
2 f .

~13!

By putting b50 we find Sa( f ) corresponding to perfectly
absorbing endpoints

Sa~ f !5
AD

~p f !3/2L

sinhSAp f

D
L D 2sinSAp f

D
L D

sinh2SAp f

D

L

2
D 1cos2SAp f

D

L

2
D .

~14!

The expression forS( f ) takes into account the finitenes
of the ratioa/L while Sa( f ) corresponds to the limiting cas
when the ratio is zero. The most interesting qualitative ma
festation of the finiteness of this ratio is the increase of
low-frequency ‘‘white’’ part of the spectrum,S(0), com-
pared toSa(0)

S~0!5Sa~0!S 11
3p

2

Da

DbL D , Sa~0!5
L2

3D
. ~15!
i-
e

The expression forSa(0) was obtained earlier.18 It is seen
that the second term in parentheses disappears ifD/Db

and/ora/L approach zero. For comparison, in Fig. 2 we dra
S( f ) and Sa( f ) for a/L50.025, 0.05, and 0.25 takingD
5Db .

To estimate the level of accuracy of the analytical res
obtained above we performed Brownian dynamics simu
tions of the system in Fig. 1. A typical time record of th
number of particles in the channel is presented in Fig. 3
gives a small fragment of the total trajectory that was used
calculate the spectral density. The particle number fluctua
between zero, one, two, and, rarely, three~the central part of
the upper trace!. The events corresponding to a particle
passagethrough the channel are marked by the pairs of u
ward and downward arrows. These events are relatively lo
An upward arrow shows the moment a particle enters
channel; the following downward arrow shows the mome
this particle escapes from theoppositeside of the channel. It
is seen that most of the events are unmarked. They co
spond to realizations when particles enter and leave the c
nel from the same side. These events are obviously m
shorter than those corresponding to the particle translo
tions through the channel.

The particle number correlation function and spect
density can be calculated from long trajectories of this ty
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Figure 4 compares the spectral density obtained from
~12! with simulation results. Good agreement is found n
only for long channels~e.g., the top trace,L/a540!, but also
for relatively short ones~e.g., the bottom trace,L/a54!.
Equation~12! adequately describes both the low-frequen
white part of the power spectrum and its high-frequen
tail.19

IV. A MORE SOPHISTICATED SOLUTION OF THE
PROBLEM

The solution obtained above is based on using the ra
tion boundary conditions, Eq.~7!, with k given by Eq.~8!.
Now we will derive boundary conditions in a more rigoro
way in order to rationalize the excellent agreement betw
such a simple theory and simulations. This can be done
matching the solution inside the channel with the bulk so
tion outside the channel.

In the bulk, outside the channel, the problem is thr
dimensional and the probability density,p3(r,x,t)5p3 , sat-
isfies the equation~we now use cylindrical coordinates wit
r denoting the distance from the channel axis!

]p3

]t
5Db¹2p3 , x,0, x.L. ~16!

Inside the channel the problem is also three-dimensio
However, it can be reduced to a one-dimensional problem
~a! the initial concentration is uniform and~b! it is as-

FIG. 2. Theoretical predictions forS( f ) ~solid lines! and Sa( f ) ~dashed
lines!, Eqs.~12! and~14!, compared for channels with differenta/L ratios at
a51, andDb5D51. From top to bottom:a/L50.025, 0.05, and 0.25. It is
seen that as the channel length decreases, the bends of the spectral
move to the right, to higher frequencies. Simultaneously, the curves m
downward to preserve the area under the curve which is normalized to
This normalization can be checked using Eq.~2!.
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FIG. 3. Number of particles in the channel as a function of time obtaine
numerical simulations. Three-dimensional Brownian trajectories were g
erated using three normally distributed random variables that determine
jump of a particle in each direction during the discrete time stepDt. The
values of parameters were chosen so that 2DDt!a2, making the diffusion
simulation effectively continuous in space. Collisions with the walls we
assumed to be elastic. The reservoir size was taken to be much larger
the channel diametera ~namely, 50350350 for a51! to get rid of finite
size effects. The traces presented here have been obtained forL520, D
55•1023 with the total of 640 particles in the system. A time interv
corresponding to 105 time steps is shown below the record.

FIG. 4. Spectral density obtained from numerical simulations in compari
with the theoretical predictions. Solid lines are drawn according to Eq.~1!
with ^N&5Lpa2n and S( f ) given in Eq. ~12!. Parameters are: particle
concentration n50.01, Dg50.1, a5V51, Db5D55•1023, and L
540;30;20;10;4, from top to bottom. Excellent agreement between
theory and the simulations is seen over the entire frequency range.
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ve
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sumed that the cross-sectional concentration profile at
ends of the channel remains uniform for all time. After the
assumptions have been made, this problem can be so
exactly.

The probability density for the one-dimensional proble
satisfies Eq.~3!. To match the intrachannel and bulk sol
tions, we use the continuity of the probability density and
flux at the channel boundary. This leads to~we consider only
the left boundary located atx50!

p~0,t !5pa2p3~r,0,t !, 0,r,a ~17!

and

D
]p~x,t !

]x U
x50

52pDbE
0

a

r
]p3~r,x,t !

]x U
x50

dr. ~18!

The probability densityp3(r,x,t) can be expressed i
terms of the concentration that arises in calculating the
into the absorbing disk. The disk has radiusa and is located
on a reflecting wall atx50, so that its center is at the origin
r5x50. The concentrationc(r,x,t) satisfies the equation

]c

]t
5Db¹2c, x,0, ~19!

with the boundary conditions

c~r,0,t !ur,a50,
]c~r,x,t !

]x U
x50, r.a

50, ~20!

and the initial conditionc(r,x,0)51. Time-dependent rate
coefficient describing the trapping is given by

k~ t !52pDbE
0

a

rF2
]c~r,x,t !

]x U
x50

Gdr. ~21!

The infinite time limit ofk(t) is 4Dba, the quantity used to
determinek in Eq. ~8!.

It is most convenient to give the relation betweenp3 and
c in Laplace domain. The relation is

p̂3~r,x,s!5
1

pa2 p̂~0,s!@12sĉ~r,x,s!#. ~22!

One can check that thisp3(r,x,s) satisfies the Laplace trans
form of the diffusion equation in Eq.~16!, the reflecting
boundary conditions on the wall, and the matching condit
in Eq. ~17!. After substituting this result into the Laplac
transform of the second matching condition in Eq.~18!, we
obtain

D
] p̂~x,s!

]x U
x50

5
sk̂~s!

pa2 p̂~0,s!, ~23!

wherek̂(s) is the Laplace transform ofk(t).
Equation~23! provides the boundary condition atx50

for the effectively one-dimensional problem inside the ch
nel. In the same way one can derive the boundary condi
at x5L

D
] p̂~x,s!

]x U
x5L

52
sk̂~s!

pa2 p̂~L,s! ~24!
e
e
ed

e

x

n

-
n

Solving the one-dimensional problem with the bounda
conditions in Eqs.~23! and ~24! it can be shown that the
Laplace transform of the survival probability,Ĉ(s), is given
by the expression in Eq.~11! with k replaced bysk̂(s)/pa2.
This result is exact for the problem specified by Eqs.~16!–
~18!.

To compare the boundary conditions in Eqs.~23! and
~24! with those given in Eq.~7!, we use the approximate
expression fork̂(s) ~Ref. 20!

k̂~s!5
4aDb

s F11
p

4
Asa2

Db S12

4

p
21

p~42p!

p228
1Asa2

Db

D G .

~25!

This expression reproduces the first two terms in both largs
and small-s expansions of the rate constant. The correspo
ing expression in time domain is exact at short and lo
times; at intermediate times it is within one percent of t
results of numerical solution of the diffusion equation. Equ
tion ~25! shows that sk̂(s) approaches 4aDb when s
,Db /a2. In time domain this means thatk(t) approaches its
plateau value 4aDb on times of the order ofa2/Db . Thus,
on times larger thana2/Db , the boundary conditions in Eq
~7! and Eqs.~23! and ~24! coincide.

Finally, we note that the boundary condition in Eq.~24!
in time domain has the form

D
]p~x,t !

]x U
x5L

52
1

pa2 Fk~ t !p~L,0!1E
0

t

k~ t2t8!
]p~L,t8!

]t8
dt8G . ~26!

Thus the fluxes at timet are related to the densities at the e
points at earlier times.

V. CONCLUDING REMARKS

In this paper we derived an analytic expression for
spectral density of the particle number fluctuations within
channel of lengthL. In our theory the spectral density wa
obtained by Fourier transforming the survival probability
a particle initially uniformly distributed on an interval o
lengthL with partially absorbing endpoints~where radiation
boundary conditions were imposed!. It follows from Eq. ~2!
that the spectral density at zero frequency is four times
mean lifetime of such a particle.

This lifetime can be obtained in closed form for arbitra
position-dependent diffusion coefficientD(x) and potential
U(x) along the channel.21 By exploiting this result we can
readily obtain an analytic expression forS(0). Forexample,
when U(0)5U(L)50 and bothD(x) and U(x) are sym-
metric about the center of the channel, it can be shown
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S~0!5
pa

Db
E

0

L/2

e2bU~x!dx

1
4*0

L/2 @ebU~x!/D~x!# @*x
L/2e2bU~y!dy#2dx

*0
L/2e2bU~x!dx

.

~27!

When D(x)5D and U(x)50 this reduces toS(0) in Eq.
~15!. Since in most experiments it is, in fact, only the ze
frequency limit of the spectral density that can be read
measured, we expect that the above result will prove us
in the data analysis.

ACKNOWLEDGMENTS

Authors thank V. Adrian Parsegian and Igor Vodyan
for fruitful discussions. M.A.P. was also supported by t
Russian State Programs on Physics of Quantum and W
Processes~Statistical Physics Subprogram! and on Neutron
Research of Matter and by RFBR Grant No. 99-02-1754

1G. Blobel, Cold Spring Harbor Symp. Quant. Biol.60, 1 ~1995!.
2D. K. Marciano, M. Russel, and S. M. Simon, Science284, 1516~1999!.
y
ul

ve

3G. A. Weisman, K. D. Lustig, I. Friedberg, and L. A. Heppel, Methods
Enzymology171, 857 ~1989!.

4C. M. Feldherr, inNucleocytoplasmic Transport, edited by R. Peters and
M. Trendelenburg~Springer-Verlag, New York, 1986!, pp. 53–61.

5B. K. Jap and P. J. Walian, Q. Rev. Biophys.23, 367 ~1990!.
6T. K. Rostovtseva and M. Colombini, Biophys. J.72, 1954~1997!.
7S. M. Bezrukov, J. Membr. Biol.174, 1 ~2000!.
8J. S. Bendat and A. G. Piersol,Random Data~Wiley, New York, 1986!.
9J. M. Richardson, Bell Syst. Tech. J.29, 117 ~1950!.

10K. M. van Vliet and J. R. Fasset, inFluctuation Phenomena in Solids,
edited by R. E. Burgess~Academic, New York, 1965!, pp. 267–354.

11R. J. van den Berg, A. de Vos, P. van den Boog, and J. de Goede, inNoise
in Physical Systems and1/f Noise, edited by A. D’Amico and P. Mazzetti
~Elsevier, New York, 1986!, pp. 213–216.

12M. W. Kim, Y. C. Chou, W. I. Goldburg, and A. Kumar, Phys. Rev. A22,
2138 ~1980!.

13G. Feher and M. Weissman, Proc. Natl. Acad. Sci. U.S.A.70, 870~1973!.
14H. C. Berg,Random Walks in Biology~Princeton University Press, New

Jersey, 1993!.
15T. Schirmer, T. A. Keller, Y.-F. Wang, and J. P. Rosenbusch, Science267,

512 ~1995!.
16C. Andersen, M. Jordy, and R. Benz, J. Gen. Physiol.105, 385 ~1995!.
17H. C. Berg and E. M. Purcell, Biophys. J.20, 193 ~1977!.
18S. M. Bezrukov, I. Vodyanoy, and V. A. Parsegian, Nature~London! 370,

279 ~1994!.
19M. Lax and P. Mengert, Phys. Chem. Solids14, 248 ~1960!.
20R. Zwanzig and A. Szabo, Biophys. J.60, 671 ~1991!.
21A. Szabo, K. Schulten, and Z. Schulten, J. Chem. Phys.72, 4350~1980!.


